Informal discussion of the Euler's constant

From Applied Science
Revision as of 00:46, 8 April 2022 by Wikiadmin (talk | contribs)

(graph not to scale)

I'm going to resort to the concept of the integral without the formalism. If you derive the natural log the result is the inverse of [math]\displaystyle{ x }[/math]. The other direction, if you calculate the area under the function's curve given by the inverse of [math]\displaystyle{ x }[/math] you get the natural log. The reason for this specific function [math]\displaystyle{ f(x) = 1/x }[/math] is that deriving logs in any base that isn't [math]\displaystyle{ e }[/math] yields [math]\displaystyle{ 1/xb }[/math], where [math]\displaystyle{ b \neq 1 }[/math] and is some log. With the natural log we have that [math]\displaystyle{ \ln(e) = 1 \iff e^1 = e }[/math], which implies that if we integrate [math]\displaystyle{ 1/x }[/math] from 1 to [math]\displaystyle{ e }[/math] the result is 1. Why from 1? Because [math]\displaystyle{ e^0 = 1 \iff \ln(1) = 0 }[/math]. For now it suffices to say that the concept of the integral that we first learn is a sum of rectangles under the function's curve. The base of the rectangle is [math]\displaystyle{ x_2 - x_1 }[/math] and the height is [math]\displaystyle{ f(x_2) }[/math] itself. There is a matter about error in this computation regarding a small area between a rectangle and the function, but I'm disregarding the Riemann integral's formalism for now.

You can try to calculate the area under [math]\displaystyle{ 1/x }[/math], from 1 to [math]\displaystyle{ e }[/math], with a calculator and brute force. Try a rectangle where the base is [math]\displaystyle{ 1.2 - 1.1 }[/math] and the height is [math]\displaystyle{ f(1.2) }[/math]. Sum the area of this rectangle with the next, base [math]\displaystyle{ 1.3 - 1.2 }[/math] and the height is [math]\displaystyle{ f(1.3) }[/math]. Repeat until you reach a number under 1 but close to it. If we deform the graph of [math]\displaystyle{ 1/x }[/math] by multiplying it by any [math]\displaystyle{ c \gt 0 }[/math] and [math]\displaystyle{ c \neq 1 }[/math], the area from 1 to [math]\displaystyle{ e }[/math] won't be equal to 1. Which also implies that [math]\displaystyle{ c \cdot \ln(e) \neq 1 }[/math]. Using composition to deform the graph of [math]\displaystyle{ 1/x }[/math] by applying a [math]\displaystyle{ g(x) }[/math] also has the effect of modifying the area from 1 to [math]\displaystyle{ e }[/math].

A formal way to define the [math]\displaystyle{ e }[/math] requires computing a limit of a sequence. Let's skip the theory for now. To compute the sum of areas of rectangles is equivalent to a sum of numbers. With this in mind there must be some sum of numbers such that the result is [math]\displaystyle{ e }[/math]. Yes, it's this one:

[math]\displaystyle{ \lim_{n \ \to \ \infty} \left(1 + \frac{1}{n}\right)^n }[/math] (this isn a sum, not the integral of a function)