Calculus theory: Difference between revisions
From Applied Science
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
* '''Functions''' | * '''Functions''' | ||
<div style="width:100%; float:left; padding-bottom: | <div style="width:100%; float:left; padding-bottom:1.5em;"> | ||
<div style="width: 50%; float:right;"> | <div style="width: 50%; float:right;"> | ||
* [[Graphs of trigonometric functions]] | * [[Graphs of trigonometric functions]] | ||
Line 21: | Line 21: | ||
* '''Limits and continuity''' | * '''Limits and continuity''' | ||
<div style="width:100%; float:left; padding-bottom: | <div style="width:100%; float:left; padding-bottom:1.5em;"> | ||
<div style="width: 50%; float:right;"> | <div style="width: 50%; float:right;"> | ||
* [[Properties of limits]] | * [[Properties of limits]] | ||
Line 37: | Line 37: | ||
* '''Differentiation and derivatives''' | * '''Differentiation and derivatives''' | ||
<div style="width:100%; float:left; padding-bottom: | <div style="width:100%; float:left; padding-bottom:1.5em;"> | ||
<div style="width: 50%; float:right;"> | <div style="width: 50%; float:right;"> | ||
* [[Linear approximation for two variables]] | * [[Linear approximation for two variables]] | ||
Line 61: | Line 61: | ||
* '''Applications of differentiation''' | * '''Applications of differentiation''' | ||
<div style="width:100%; float:left; padding-bottom: | <div style="width:100%; float:left; padding-bottom:1.5em;"> | ||
<div style="width: 50%; float:left;"> | <div style="width: 50%; float:left;"> | ||
* [[Increasing and decreasing functions]] | * [[Increasing and decreasing functions]] |
Revision as of 18:16, 6 May 2022
- Functions
- Limits and continuity
- Differentiation and derivatives
- Mistakes regarding derivatives
- Defining the derivative
- Partial derivatives and direction
- Defining the gradient
- Conditions for differentiability for a single variable
- Conditions for differentiability for many variables
- A sufficient condition for differentiability for many variables
- Linear approximation for one variable
- Applications of differentiation
- Integration and total change